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Abstract This paper proposes a system optimal dynamic traffic assignment model
that does not require the network to be empty at the beginning or at the end of the
planning horizon. The model assumes that link travel times depend on traffic densi-
ties and uses a discretized planning horizon. The resulting formulation is a nonlinear
program with binary variables and a time-expanded network structure. Under a rela-
tively mild condition, the nonlinear program has a feasible solution. When necessary,
constraints can be added to ensure that the solution satisfies the First-In-First-Out
condition. Also included are approximation schemes based on linear integer pro-
grams that can provide solutions arbitrarily close to that of the original nonlinear
problem.

Keywords Dynamic traffic assignment · Time-varying network flows · System
optimum

1 Introduction

Since Merchant and Nemhauser (see [29, 30]) first proposed their model in 1978, there
have been a number of papers (see, e.g. [5, 12, 13, 16, 22–24, 26, 41, 42, 46]) discuss-
ing the variational inequalities or mathematical programming formulations for the
dynamic traffic assignment problem with the assumption that the planning horizon is
a set of discrete points instead of a continuous interval. Many of these papers use a
dynamic or time-expanded network (see, e.g. [1]) to simultaneously capture the topol-
ogy of the transportation network and the evolution of traffic over time. Implicitly or
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otherwise, these papers typically assume that there is no traffic at the beginning of
the planning horizon (or at time zero) and that all trips must exit the network prior to
the end. When there are cars at the time zero, the times at which these cars enter the
network must be known in order to determine when they will exit the arcs on which
they were travelling. In practice, data with such details do not generally exist.

There are two main factors that distinguish the models in papers referenced above.
First, some (e.g. [4, 5, 12, 17, 20, 22, 24, 29, 46]) seek a system optimal solution and
others (e.g. [2, 13, 16, 18, 23, 36, 37, 42]) compute a user equilibrium instead. The
other factor is the travel cost function used by these models. Among other parameters
(physical or otherwise), a travel time or cost function may depend on the number of
cars on the link and the input and output rates. Many (e.g. [6–8, 10, 15, 21, 28]) have
analyzed the effects of travel cost functions on various models. Some (e.g. [21, 28])
have shown that some travel cost functions are not consistent with the models that
use them.

Similar to Carey and Srinivasan [11], Carey and Subrahmanian [12], Carey [5],
Chen and Hsueh [13] and Koufman et al. [24], the model in this paper is based on the
time-expanded network. However, instead of assuming that the network is empty at
the beginning or at the end, this paper treats the planning horizon as a circular inter-
val instead of linear. For example, consider the interval [0, 24], i.e. a 24-h planning
horizon. When viewed in a linear fashion, it is typically assumed that there is no car
in the network at times 0 and 24. In turn, this implies there is no travel demand after
time k < 24. Otherwise, cars that enter the network after time k cannot reach their
destinations by time 24, thereby leaving cars in the network at the end of the horizon.
On the other hand, if there is a car entering a street at 23:55 h (11:55 p.m.) and exiting
at 24:06 h (12:06 a.m., the next day) in a circular planning horizon, the exit time of this
car would be treated as 00:06 h instead. When accounted in this manner, it is possible
to determine the exit time for every car that is in the network at time zero without
requiring any additional data. Additionally, models that view the planning horizon in
a circular fashion are more general in that they include those with a linear planning
horizon. By setting the travel demands and other variables during an appropriate time
interval to zero, models with a circular planning horizon effectively reduce to ones
with a linear horizon.

It is often argued that the number of cars at the beginning and the end of the
horizon are small and solutions to DTA are not drastically affected by setting them to
zero. When the paths that these cars use do not overlap, the argument is valid. How-
ever, when these cars have to traverse the same arc in reaching their destinations, the
number of cars on the arc may be significant and ignoring it may lead to a solution
significantly different from the one that accounts for all cars.

This paper makes two main assumptions. One requires the link travel time at time
t to be a function of only the number of cars on the link at that time. Carey and Ge
[10] show that the solutions of models using functions of this type converge to the
solution of the Lighthill–Whitham–Richards model (see [27, 38]) as the discretization
of links into smaller segments is refined. Because minimizing the total travel time
or delay mitigates its occurrence, models discussed herein do not explicitly addresse
spillback. On the other hand, the models can be extended to handle spillback using a
technique similar to the one in [25] or an alternative travel time function that includes
the effect of spillback (see, e.g. [33]). However, as indicated in the reference, using
such a function may not lead to a model with a solution.
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For the remainder, Sect. 2 defines the concept of periodic planning horizon.
Section 3 formulates the system version of the discrete-time dynamic traffic assignment
problem with periodic planning horizon or discrete-time dynamic traffic assignment
(DTDTA) and prove that a feasible solution exists under a relatively mild condition.
To our knowledge, there are only four papers [3, 40, 42, 45] that address the existence
issue and some (see, e.g. [40, 45]) consider this samll number to be lacking. All four
deal with user equilibrium problems instead of system optimal. Section 4 describes
two linear integer programs that provide bounds for DTDTA. Section 5 presents
numerical results for small test problems (we discuss algorithms for solving larger
problems in a separate paper) and, finally, Sect. 6 concludes the paper.

2 Periodic planning horizon

The models in this paper assume that the planning horizon is a half-open interval of
length T, i.e. [0, T). Instead of viewing this interval in a linear fashion, the interval
is treated in a circular manner as shown in Fig. 1. In doing so, time 0 and T are the
same instant. For example, time 0:00 and 24:00 h (or midnight) are the same instant
in a 24 h day. For this reason, T is excluded and the planning horizon is half-open. To
make the discussion herein more intuitive, we often refer to the planning horizon as
a 24 h day, i.e., T = 24. In theory, the planning horizon can be of any length as long as
events occur in a periodic fashion. If an event (e.g., five cars enter a street) occurs at
time t, then the same event also occurs at time t + kT, for all integer k ≥ 1.

Because the planning horizon is circular, events occurring tomorrow are assumed
to occur in the same interval that represents today. For example, consider a car that
enters a street at t1 = 23:00 h (or 11 p.m.) today and traverses the street until it leaves
at t2 = 01:00 h (or 1 a.m.) tomorrow. (see Fig. 2). In a circular planning horizon, these
two events, a car entering and leaving a street, occur at time 23:00 h and 01:00 h in
the same interval [0, 24). In general, if a car enters a street at time t1 < T and takes
τ < T units of time to traverse, then the two events are assumed to occur at t1 and
mod{t1 + τ , T} on the interval [0, T).

3 Discrete-time dynamic traffic assignment problem with a periodic time horizon

Although, it is possible to formulate the dynamic traffic assignment problem with a
periodic time horizon as an optimal control problem, solving it is typically troublesome
(see, e.g. [32] ). This section presents a discrete-time version of the problem in which

Fig. 1 Linear versus circular intervals
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the interval [0, T) is represented as a set of discrete points, i.e., � = {0, δ, 2δ, . . . , T−δ},
where δ = T

N and N is a positive integer. (In general, the subdivision of the planning
horizon need not be uniform. For example, the subdivision during the period between
22:00 and 06:00 h may be coarser than the one for the period between 06:00 and
22:00 h.) In order to avoid using fractional numbers in the set of indexes and to
simplify our presentation, we typically assume that δ = 1.

To formulate the problem, let G(N, A) represent the underlying transportation
network where N and A denote the set of nodes and arcs in the network, respectively.
It is convenient to refer to elements of A either as a single index a or a pair of indices
(i, j). The latter is used when it is necessary to reference the two ends of an arc explic-
itly. Furthermore, C is a set of origin-destination (OD) pairs and the travel demand
for OD pair k during the time interval [t, t + δ], t ∈ �, is hk

t .
There is also a travel time function associated with each arc in the network. In the

literature (see, e.g. [9, 35, 43]), these functions can depend on a number of factors
such as in-flow and out-flow rates and traffic densities. We assume in this formulation
that φa, the travel time associated with arc a, depends only on the number of cars
on the arc. Furthermore, φa is continuous, nondecreasing and bounded by T, i.e.,
0 < φa(w) < T, ∀w ∈ [0, Ma], where Ma is a sufficiently large upper bound for the
range of φa(w) and there is no feasible solution whose flow on arc a can exceed Ma.
In particular, φa(0) represents the free-flow travel time on arc a.

We use the dynamic or time-expanded (TE) network (see, e.g. Sect. 19.6 in [1]) to
determine the state of vehicular traffic in the system at each time t ∈ �. To illustrate
the concept of time expansion, consider the static network with three nodes shown in
Fig. 3 or the three-node network. In this network, all arcs have the same upper bound
value, Ma = M, and there is only one OD pair (1, 3). Let planning horizon be the
interval [0, 5) and δ = 1. Thus, � = {0, 1, 2, 3, 4}. The travel time function for every arc
is φ and 1.5 ≤ φ(w) ≤ 4, ∀w ∈ [0, M]. To construct the TE network, the travel time
also needs to be discretized. In general, the set of possible discrete travel times of arc
a is �a = {s : s = �φa(w)

δ
�, 0 ≤ w ≤ Ma}. For our example, the set of possible discrete

travel times for each arc is �a = {2, 3, 4}, ∀a.

Fig. 2 Events occurring in two consecutive planning horizons

Fig. 3 Three-node network
1

2 3
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To incorporate the time component in the TE network, every node in the static
network (or static node) is ‘expanded’ or replicated once for each t ∈ �. For the
three-node network, static node 1 is transformed into five TE nodes, one for each t ∈ �,
in the TE network. For example, node 1 is expanded into nodes 10, 11, 12, 13, and 14
in the TE network (see Fig. 4). Similarly, each arc (i, j) in the static network (or static
arc) is replicated once for each pair of (t, s), where t ∈ � and s ∈ �(i,j). Consider arc
(1, 2) in the three-node network. Cars that enter this arc at time 1 can take 2, 3 or 4
units of time to traverse depending (as assumed earlier) on the number of cars on the
arc at t = 1. To allow all possibilities, arc (1, 2) is expanded into three TE arcs (11, 23),
(11, 24), and (11, 20). The latter represents a car that enters arc (1,2) at time 1, takes
four units of time to traverse, and leaves the arc at time 5 or 0 (or mod (1 + 4, 5)) of
the following day. Similar expansion applies to each t ∈ �. In general, each static arc
(i, j) expands into |�| × |�(i,j)| TE arcs of the form (it, j mod (t+s,T)), ∀t ∈ �, s ∈ �(i,j).

Figure 5 displays the complete time expansion of the three-node network. In addi-
tion to the time-expanded nodes and arcs, the figure also displays the travel demand
at the origin TE nodes (i.e., node 1t, ∀t ∈ �) and decision variables gk

d(k)t
representing

number of cars arriving at the destination node d(k) of OD pair k at time t, i.e., at
node 3t, ∀t ∈ �.

To reference flows on TE arcs, let yk
a(t,s) denote the amount of flow for commodity

k that enters static arc a at time t ∈ �, takes s ∈ �a units of time to traverse it, and
then exits the arc at time mod{t + s, T}. In particular, if a = (i, j), then the subscript
a(t, s) refers to TE arcs of the form (it, j mod (t+s,T)), ∀ t ∈ �, s ∈ �(i,j). In addition,
Ya(t,s) = ∑

k∈C yk
a(t,s) represents the total flow on arc a(t, s).

To compute the time to traverse a static arc at time t, let

�a(t) = {(τ , s) : τ = [t − 1]T , [t − 2]T , . . . , [t − s]T , s ∈ �a} ,

where

Fig. 4 Time expansion of arc
(1, 2) at t = 1 1
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Fig. 5 Time-expansion of the three-node network

[
q
]

T =
{

q, if q ≥ 0,
T + q, if q < 0.

In words, �a(t) contains pairs of entrance, τ , and travel times, s, for static arc a such
that, if a car enters static arc a at time τ and takes s time units to traverse it, the car
will still be on the arc at time t. For example, if t = 11:00 h and the time to traverse
arc a is 5 h for the previous five consecutive time periods, then cars entering arc a at
time τ = 10:00, 9:00, 8:00, 7:00, and 6:00 h will be on the arc at 11:00 h. (We assume
here that cars entering arc a at, e.g., 6:00 h are still on the arc at 11:00 h even though it
is scheduled or expected to leave at 11:00 h.) When t is relatively near the beginning
of the planning horizon, the notation [·]T accounts for cars on the arc at time t that
enter it from the previous day. Continuing with the foregoing example, let t = 3:00 h
instead. Then, cars entering arc a at time τ = 2:00, 1:00, 0:00, 23:00, and 22:00 h are
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still on the arc at 3:00 h. Using the set �a(t), the total amount of flow on static arc a at
time t or xa(t) is

∑
(τ ,s)∈�a(t)

Ya(τ ,s).
There are two additional sets of decision variables. One set consists of za(t,s), a

binary variable that equals one if it takes between (s − δ) and s units of time to
traverse arc a at time t. In the formulation below, the value of za(t,s) depends on xa(t)
and, for each t, za(t,s) = 1 for only one s ∈ �a. The other set consists of gk, a vector
with a component for each node in the TE network. Component it of gk is set to zero
if i is not the destination node of OD pair k. Otherwise, gk

d(k)t
, where d(k) denotes the

destination node of OD pair k, is a decision variable that represents the amount of
flow for commodity k that reaches its destination, d(k), at time t.

Below is a mathematical formulation of the discrete-time dynamic traffic assign-
ment problem with periodic planning horizon (DTDTA).

min
(x,y,z,g)

∑

t∈�

∑

a∈A

⎡

⎣φa(xa(t))
∑

s∈�a

Ya(t,s)

⎤

⎦,

subject to:

Byk + gk = bk, ∀k ∈ C, (1)

∑

t∈�

gk
d(k)t

=
∑

t∈�

hk
t , ∀k ∈ C, (2)

Ya(t,s) =
∑

k∈C

yk
a(t,s), ∀t ∈ �, a ∈ A and s ∈ �a, (3)

xa(t) =
∑

(τ ,s)∈�a(t)

Ya(τ ,s), ∀t ∈ � and a ∈ A, (4)

∑

s∈�a

za(t,s) = 1, ∀t ∈ � and a ∈ A, (5)

∑

s∈�a

(s − δ)za(t,s) ≤ φa(xa(t)) ≤
∑

s∈�a

sza(t,s), ∀t ∈ � and a ∈ A, (6)

Ya(t,s) ≤ Maza(t,s), ∀t ∈ �, a ∈ A and a ∈ �a, (7)

yk
a(t,s) ≥ 0, gk

d(k)t
≥ 0, xa(t) ≥ 0, za(t,s) ∈ {0, 1}, ∀t ∈ �, a ∈ A, s ∈ �a and k ∈ C. (8)

In the objective function,
∑

s∈�a
Ya(t,s) represents the number of cars that enter arc a

at time t and, based on our assumption, these cars experience the same travel time,
φa(xa(t)). Thus, the goal of this problem is to minimize the total travel time or delay.
Using constraint (4), the objective function can be equivalently written as

min
(x,y,z,g)

∑

t∈�

∑

a∈A

⎡

⎣φa

⎛

⎝
∑

(τ ,s)∈�a(t)

Ya(τ ,s)

⎞

⎠
∑

s∈�a

Ya(t,s)

⎤

⎦
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or, more compactly, as

min �(Y)TY,

where Y and �(Y) are vectors of arc flows (Ya(t,s)) and travel times (φa(
∑

(τ ,s)∈�a(t)

Ya(τ ,s))) whose components are defined so that their inner product is consistent with
the summations.

Constraint (1) ensures that flows are balanced at each node in the TE network. In
this constraint, B denotes the node-arc incidence matrix of the TE network and bk is
a constant vector with a component for each TE node and defined as follows:

bk
it =

{
0, if i �= o(k),
hk

t , if i = o(k),

where o(k) denotes the origin node of OD pair k. Constraint (2) guarantees that the
number of cars arriving at the destination node d(k) equals the total travel demand of
OD pair k during the planning horizon. Then, constraint (3) computes the total flow
on each TE arc and (4) determines the number of cars that are still on static arc a at
time t.

In combination, the next three constraints, i.e., constraints (5)–(7), compute the
travel time for the cars that enter arc a at time t and only allow flows to traverse
the corresponding arc in the TE network. In particular, constraint (5), in conjunction
with (6), chooses one (discretized) travel time s ∈ �a that best approximates φa(xa(t)),
i.e., φa(xa(t)) ∈ (s − δ, s]. When a represents arc (i, j), constraint (7) only allows arc
(it, imod(t+s,T)) to have a positive flow. Otherwise, (7) forces flows on arc (it, imod(t+τ ,T)),
for τ ∈ �a and τ �= s, to be zero. Finally, constraint (8) makes sure that appropriate
decision variables are either nonnegative or binary.

As formulated above, the travel time associated with za(t,s) in Eq. 6 can only take
on discrete values from the set �a while the travel time in the objective function varies
continuously. Although it may be more consistent to use discrete values of travel
times in the objective function, the above model would provide a better solution
because the true travel time is used to calculate the total delay. The model also has
interesting properties discussed in Sect. 4. In addition, the treatments of travel times
in both the objective function and constraints can be made consistent by solving the
(approximation) refinement problem also discussed in the same section.

Under a relatively mild sufficient condition, we show below that DTDTA has a
solution by constructing a feasible solution. In fact, the solution we construct below
is generally far from being optimal. However, it suffices for the purpose of proving
existence. Let Ra(t) be a set of discrete times at which a car enters arc a and still
remains on the arc at time t. Below, we refer to Ra(t) as the enter-remain set. Given
xa(t), Ra(t) ⊆ � is a union of two sets, i.e.,

Ra(t) =
{

w ∈ � : w ≤ (t − 1), w +
⌈

φ(xa(w))

δ

⌉

≥ t
}

∪
{

w ∈ � : w ≥ (t + 1), w

+
⌈

φ(xa(w))

δ

⌉

− T ≥ t
}

.

In addition, let ua(t) denote the total flow into arc a at time t. When ua(t) is given for
each t ∈ �, the lemma below shows that a set of xa(t), Ya(t,s), and za(t,s) consistent with
constraints (4)–(7) and relevant conditions in (8) exists when Ma is sufficiently large.
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Lemma 1 Assume that ua(t) is known for a given a ∈ A and all t ∈ �. If Ma is suffi-
ciently large, then there exists a set of xa(t), Ya(t,s), and za(t,s) that satisfies constraints
(4)–(7) and the relevant conditions in (8).

Proof (Because a is given, we discard the subscript a in places where there is no
confusion in order to simplify our notation.) Below, we construct sequences {sm

t },
{zm

a(t,s)}, {Ym
a(t,s)}, {xm

a(t)}, and {Rm
t } whose limits yield the set of decision variables fea-

sible to constraints stated above.
For m = 1, let

• s1
t = �φa(0)/δ�, i.e., s1

t is the discretized free flow travel time for arc a;
• z1

a(t,s1
t )

= 1 and z1
a(t,s) = 0, ∀s ∈ �, s �= s1

t ;

• Y1
a(t,s1

t )
= ua(t) and Y1

a(t,s) = 0, ∀s ∈ �, s �= s1
t ;

• R1
t = {ω ∈ � : ω ≤ (t − 1), ω + s1

ω ≥ t} ∪ {ω ∈ � : ω ≥ (t + 1), ω + s1
ω − T ≥ t};

• x1
a(t) = ∑

ω∈R1
t

Y1
a(ω,s1

ω)
.

As defined above, R1
t is the enter-remain set based on the travel time s1, a vector of

s1
ω, ∀ω ∈ �. For m ≥ 2, let

• sm
t = �φa(x

m−1
a(t) )/δ�;

• zm
a(t,sm

t )
= 1 and zm

a(t,s) = 0, ∀s ∈ �, s �= sm
t ;

• Ym
a(t,sm

t )
= ua(t) and Ym

a(t,s) = 0, ∀s ∈ �, s �= sm
t ;

• Rm
t = {ω ∈ � : ω ≤ (t − 1), ω + sm

ω ≥ t} ∪ {ω ∈ � : ω ≥ (t + 1), ω + sm
ω − T ≥ t};

• xm
a(t) = ∑

ω∈Rm
t

Ym
a(ω,sm

ω ).

Sequences {sm
t }, {xm

a(t)}, and {Rm
t } constructed above are monotonically nondecreas-

ing. Consider the sequence {sm
t }. Observe that s2

t ≥ s1
t , ∀ t ∈ � because x1

a(t) ≥ 0, ∀ t ∈
�, and as assumed earlier φa(·) is nondecreasing. It follows that, for any t ∈ �,
ω + s2

ω ≥ ω + s1
ω ≥ t, and ω + s2

ω − T ≥ ω + s1
ω − T ≥ t. Thus, ω ∈ R1

t implies that
ω ∈ R2

t , i.e., R1
t ⊆ R2

t for all t ∈ �. The latter and the fact that ua(t) is nonnegative
imply that x2

a(t) = ∑
ω∈R2

t
Y2

a(ω,s2
ω)

≥ ∑
ω∈R1

t
Y1

a(ω,s1
ω)

= x1
a(t), ∀t ∈ �.

Assume that the claim is true up to some fixed m. For all t ∈ �, sm+1
t =�φa(xm

a(t))/δ�≥
�φa(x

m−1
a(t) )/δ� = sm

t , because xm
a(t) ≥ xm−1

a(t) and φa(·) is nondecreasing. Using an argu-

ment similar to above, Rm
t ⊆ Rm+1

t and xm+1
a(t) ≥ xm

a(t). Thus, the three sequences
are monotonically nondecreasing. In addition, all three sequences are bounded, i.e.,
sm

t < T, Rm
t ⊆ �, and xm

a(t) ≤ ∑
t∈� ua(t) and, therefore, convergent. Let s∞

t , R∞
t ,

and x∞
a(t) be their limits. Based on our construction, s∞

t = �φa(x∞
a(t))/δ�, z∞

a(t,s∞t )
= 1,

and z∞
a(t,s) = 0, ∀s ∈ �, s �= s∞

t . In combination, these ensure that constraints (5) and
(6) are satisfied. Our construction also implies that Y∞

a(t,s∞t )
= ua(t) and Y∞

a(t,s) = 0,
∀s ∈ �, s �= s∞

t . Because Ma is sufficiently large, Y∞
a(t,s) satisfies constraint (7).

In the limit, R∞
t = {ω ∈ � : ω ≤ (t−1), ω+ s∞

ω ≥ t}∪{ω ∈ � : ω ≥ (t+1), ω+ s∞
ω −

T ≥ t}. Thus, R∞
t is consistent with s∞ and x∞

a(t) = ∑
ω∈R∞

t
Y∞

a(ω,s∞ω ) = ∑
(τ ,s)∈�a(t)

Y∞
a(τ ,s)

because Y∞
a(t,s) = 0, ∀s ∈ �, s �= s∞

t . So, x∞
a(t) satisfies (4). Furthermore, x∞

a(t) and Y∞
a(t,s)

are both nonnegative and z∞
a(t,s) is binary. Thus, the proof is complete. ��

In the above proof, if, for some m, sm
t is larger than the maximum travel time for

arc a, i.e., max{s : s ∈ �a} (or, equivalently, xm
a(t) > Ma), then ua(t) is infeasible or not

compatible with the upper bound Ma.
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To establish the existence of a feasible solution to DTDTA, recall that G(N, A)

denotes the (static) transportation network. For the theorem below, assume without
loss of generality that each node in N can be either an origin or destination, but not
both. If node i is both an origin and a destination, then we create a dummy node i′
and use node i as the origin node and i′ as a destination. For example, consider OD
pairs (i, j) and (j, i). In this case, i and j are both origins and destinations. When the
dummy nodes are added, the two OD pairs become (i, j′) and (j, i′). Let pk denote
a path in G(N, A) connecting the OD pair k, i.e., pk ∈ Pk. The set of these paths,
	 = {pk : k ∈ C}, induces a subgraph G(N̂, Â), where N̂ ⊆ N and Â ⊆ A denote the
sets of nodes and arcs, respectively, belonging to the paths in 	. For each i ∈ N̂, define
[i+] = {(i, j) : (i, j) ∈ Â} and [i−] = {(j, i) : (j, i) ∈ Â}. In words, [i+] and [i−] are the
sets of arcs in G(N̂, Â) that emanate from and terminate at node i, respectively. Also,
let order(i) denote a topological order of node i (see [1]). If (i, j) ∈ Â and G(N̂, Â) can
be topologically ordered, then order(i) < order(j).

Theorem 1 Assume that Ma is sufficiently large for all a ∈ Â and a node can be either
an origin or a destination, but not both. Then, DTDTA has a feasible solution, if there
exists a path pk for each k ∈ C such that the subgraph they induce is acyclic.

Proof Let 	 be a set of paths, one per OD pair, such that the subgraph, G(N̂, Â),
it induces has no cycle. Thus, N̂ can be ordered topologically (see [1]). Below, we
construct a feasible solution one arc at a time and in a topological order using Lemma
1 and only the paths in 	. The latter implies that Ya(t,s) = yk

a(t,s) = xa(t) = 0 for all
a /∈ Â.

Let node i ∈ N̂ be of (topological) order 1 and, for each arc a in [i+], define Q(a)

to be the set of paths in 	 that contain or use arc a, i.e., Q(a) = {k : a ∈ pk, k ∈ C}.
(It is not necessary to index Q(a) with i because each arc a can belong to only one
[i+].) For each k ∈ Q(a), arc a must be the first arc in path pk because node i is of
order 1. Let ua(t) = ∑

k∈Q(a) hk
t . Because Ma is sufficiently large, Lemma 1 ensures

that there exist xa(t), Ya(t,s), and za(t,s) feasible to (4)–(7) and the relevant conditions
in (8). Let yk

a(t,s∞a(t))
= hk

t and yk
a(t,s) = 0, ∀ s ∈ �, s �= s∞

a(t). So constructed, these yk
a(t,s)’s

are consistent with Ya(t,s) and satisfy the flow balance equation (1) for node i.
To construct the variables xa(t), Ya(t,s), za(t,s), and yk

a(t,s) for arcs emanating from
nodes of higher order, assume that the decision variables for arcs emanating from
nodes with order m or less have been constructed and let node i be of order (m + 1).

Case 1 The set [i+] is empty. Then, i must be a destination node for some commodity
k, i.e., i = d(k). For â ∈ [i−], k ∈ Q(̂a) and t ∈ �, set

gk
d(k)t

=
∑

{t: t+s∞a(t)=t}
yk

a(t,s∞a(t))
+

∑

{t: t+s∞a(t)−T=t}
yk

a(t,s∞a(t))
.

For each k ∈ Q(̂a), every demand hk
t uses arc â. Thus, gk

d(k)t
as constructed must satisfy

the appropriate constraints in (1) and (2).

Case 2 The set [i+] is not empty. Let â ∈ [i−], also a nonempty set. Assume that
â = (q, i). Then, order(q) < order(i) and, by the above assumption, xa(t), Ya(t,s), za(t,s),
and yk

a(t,s) are available.

Consider an arc a ∈ [i+]. For each â ∈ [i−], define Q(̂a, a) = {k : â ∈ pk, a ∈ pk, k ∈
C} and, for each k ∈ Q(̂a, a), let uk

a(t) denote the flow into arc a at time t for OD pair
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k. Then,

uk
a(t) =

∑

{t: t+s∞a(t)=t}
yk

a(t,s∞a(t))
+

∑

{t: t+s∞a(t)−T=t}
yk

a(t,s∞a(t))

and the total flow into arc a at time t is ua(t) = ∑
k∈Q(a,a) uk

a(t). Because Ma is

sufficiently large, Lemma 1 ensures that xa(t), Ya(t,s), yk
a(t,s), and za(t,s) feasible to

relevant constraints exist.

Thus, when carried out in the topological order for every arc in Â, the above process
must produce a feasible solution to DTDTA. ��

The theorem above assumes that each Ma is sufficiently large so that it is feasible to
send the entire flow for each OD pair along a single path. Although this assumption
appears to be stringent, it can be made less so by allowing the flow for each OD pair
to traverse over several paths as long as they do not induce cycles in G(N̂, Â). With
more cumbersome notation, the above argument can be extended to the case with
multiple paths per OD pair as well.

When applied to the above example in which the OD pairs (i, j) and (j, i) become
(i, j′) and (j, i′), the acyclic subgraph assumption implies that the paths from i to j′ and
from j to i′ cannot form a cycle. Intuitively, this means that there must exist two routes
between the original nodes i (e.g., home) and j (e.g., work) with no road in common.
These routes need not be optimal and there is no requirement in our formulation or
algorithms to use them. They are used only to establish the existence in Theorem 1.

The First-In-First-Out (FIFO) condition requires that cars entering an arc at time
t must leave the arc before those entering after time t. In the literature, many (see,
e.g. [33, 34, 45]) assume that the travel cost function satisfied certain conditions to
ensure FIFO. To avoid making additional assumptions, we ensure FIFO by adding the
following constraints to DTDTA instead. Doing so may make the problem harder to
solve because of the additional constraints.

t + ∑

s∈�a

sza(t,s) ≤ t + ∑

s∈�a

sza(t,s), ∀a ∈ A1 and t, t ∈ �: (t + δ) ≤ t,

t + ∑

s∈�a

sza(t,s) ≤ (t + T) + ∑

s∈�a

sza(t,s), ∀a ∈ A1 and t, t ∈ �: (t + δ) ≤ t.

When t and t represent two instances of time on the same day, the first inequality
ensures that cars entering arc a at time t leave the arc before those that enter at time
t > t. On the other hand, t and t may refer to times on consecutive days, e.g., t = 08:00 h
today and t = 09:00 h yesterday. Because of our periodic assumption, these two times
are on the same interval [00:00 and 24:00 h) and t (incorrectly) appears to be an earlier
time than t. To distinguish times on consecutive days and preserve FIFO, the second
equation represents today’s time t (e.g., 08:00 h of today) as (t + T) (e.g., as 08:00 h of
yesterday plus T) and forces cars entering the arc at this time to depart after those
that enter at yesterday’s time t (e.g., 09:00 h yesterday).

4 Bounds for discrete-time dynamic traffic assignment

As formulated in the previous section, DTDTA is a nonlinear optimization problem
with binary decision variables, a difficult class of problems to solve. This section
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describes mixed integer programs for obtaining an approximate solution to DTDTA
as well as bounds for the optimal delay.

Except for constraint (6), the constraints for DTDTA are linear. To develop a linear
version of (6), assume that the travel time function, φa, is invertible for all a ∈ A. For
example, if φa is a continuous and increasing function, then φ−1

a exists on the interval
[φa(0), φa(Ma)] (see Fig. 6). Under this assumption, φa(xa(t)) ∈ (s − δ, s] if and only if
xa(t) ∈ (φ−1

a (s − δ), φ−1
a (δ)]. Thus, the requirement (s − δ)za(t,s) < φa(xa(t)) ≤ sza(t,s)

is equivalent to φ−1
a (s − δ)za(t,s) < xa(t) ≤ φ−1

a (s)za(t,s). Recall that �a = {s : s =
�φa(w)

δ
�, 0 ≤ w ≤ Ma}. Let s1 = �φa(0)

δ
�. Then, (s1−δ) �∈ [φa(0), φa(Ma)] and φ−1

a (s1−δ)

is not well defined. (In Fig. 6, φ−1
a (s1 − δ) = φ−1

a (1) is not well defined.) In this paper,
we set φ−1

a (s1 − δ) = 0. Using this convention, constraint (6) can be replaced by the
following linear equivalence:

∑

s∈�a

φ−1
a (s − δ)za(t,s) < xa(t) ≤

∑

s∈�a

φ−1
a (s)za(t,s), ∀t ∈ � and a ∈ A. (9)

The following lemma implies that there exist linear functions that approximate the
objective function of DTDTA.

Lemma 2 There exist vectors ql and qu such that qT
l Y ≤ �(Y)TY ≤ qT

u Y for all Y
feasible to DTDTA.

Proof As defined earlier, �(Y)TY = ∑
t∈�

∑
a∈A φa(xa(t))

[∑
s∈�a

Ya(t,s)
]
. From con-

straint (6), the following hold for any feasible solution to DTDTA:

∑

t∈�

∑

a∈A

⎡

⎣
∑

s∈�a

(s − δ)za(t,s)

⎤

⎦

⎡

⎣
∑

s∈�a

Ya(t,s)

⎤

⎦ ≤ �(Y)TY

≤
∑

t∈�

∑

a∈A

⎡

⎣
∑

s∈�a

sza(t,s)

⎤

⎦

⎡

⎣
∑

s∈�a

Ya(t,s)

⎤

⎦.

1

2

3

4

)2(1−
aφ )3(1−

aφ )4(1−
aφ

)(tax

)( )(taa xφ

Fig. 6 φa(xa(t)) ∈ (s − δ, s] versus xa(t) ∈ (φ−1
a (s − δ), φ−1

a (δ)]
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The summand of the last set of summations (i.e.,
[∑

s∈�a
sza(t,s)

] [∑
s∈�a

Ya(t,s)
]
) can

be simplified. Constraint (7) implies that Ya(t,s) > 0 only if za(t,s) = 1. In addi-
tion, constraint (5) ensures that, for each pair (a, t), za(t,s) = 1 for some s ∈ �a and
za(t,s) = 0, ∀s ∈ �a, s �= s. This implies that Ya(t,s) ≥ 0 and Ya(t,s) = 0, ∀s ∈ �a, s �= s
and

⎡

⎣
∑

s∈�a

sza(t,s)

⎤

⎦

⎡

⎣
∑

s∈�a

Ya(t,s)

⎤

⎦ = sYa(t,s) =
∑

s∈�a

sYa(t,s).

A similar result holds for the first set of summations. Thus, the above inequalities
reduce to the following

∑

t∈�

∑

a∈A

∑

s∈�a

(s − δ)Ya(t,s) ≤ �(Y)TY ≤
∑

t∈�

∑

a∈A

∑

s∈�a

sYa(t,s).

Let ql and qu be two constant vectors with a component for each arc in the TE
network such that [ql]a(t,s) = (s − δ) and [qu]a(t,s) = s, respectively, for all a ∈ A, t ∈ �,
and s ∈ �a. Then,

qT
l Y =

∑

t∈�

∑

a∈A

∑

s∈�a

(s − δ)Ya(t,s) ≤ �(Y)TY ≤
∑

t∈�

∑

a∈A

∑

s∈�a

sYa(t,s) = qT
u Y. ��

Let S(δ) denote the feasible region defined by linear constraints (1)–(5), (7)–(9),
and, for convenient, (Y, Z) represents an element in S(δ). In addition, let (Yl, Zl),
(Y∗, Z∗), and (Yu, Zu) be solutions to the lower-bound problem (or min{qT

l Y: (Y, Z) ∈
S(δ)}), the original problem (or min{�(Y)TY: (Y, Z) ∈ S(δ)}), and the upper-bound
problem (or min{qT

u Y: (Y, Z) ∈ S(δ)}), respectively. Then, the following lemma holds.

Lemma 3 For any δ > 0, qT
l Yl ≤ �(Y∗)TY∗ ≤ qT

u Yu ≤ qT
u Yl.

Proof In following sequence of inequalities, the first one holds because Y∗ is feasible
to the lower-bound problem and the second follows from Lemma 2:

qT
l Yl ≤ qT

l Y∗ ≤ �(Y∗)TY∗.

Similarly, the following sequence also holds

�(Y∗)TY∗ ≤ �(Yu)TYu ≤ qT
u Yu.

Combining the above two sequences yield the first two inequalities in the lemma.
Finally, the last inequality holds because Yl is not necessarily optimal to min{qT

u Y:
(Y, Z) ∈ S(δ)}. ��

In view of the above lemma, the solutions to the upper and lower-bound prob-
lems are approximations of the solution to the original problem. The theorem below
states that the approximation can be made arbitrarily close to the original problem
by choosing a sufficiently small δ.

Theorem 2 Given ε > 0, there exists δ > 0 such that qT
u Yu − �(Y∗)TY∗ ≤ ε and

�(Y∗)TY∗ − qT
l Yl ≤ ε.

Proof By construction, qu = ql +δe, where e is (1, 1, . . . , 1)T . Let Hk denote the travel
demand for OD pair k during the entire planning horizon, i.e., Hk = ∑

t∈� hk
t and set



54 J Glob Optim (2007) 38:41–60

H = ∑
k∈C Hk. For each t ∈ �, sa(t) is such that sa(t) ∈ �a and zl

a(t,sa(t))
= 1. In words,

sa(t) is the approximate travel time for (static) arc a at time t in the optimal solution
(Yl, Zl).

Then, the following sequence must hold:

0 ≤ (qu − ql)
TYl

= δeTYl

= δ
∑

a∈A

∑

k∈C

∑

t∈�

∑

s∈�a

yk
a(t,s)

= δ
∑

a∈A

∑

k∈C

∑

t∈�

yk
a(t,sa(t))

≤ δ
∑

a∈A

∑

k∈C

Hk

= δH
∑

a∈A

1

= δH |A| .

The first inequality follows from Lemma 3. Then, the above relationship between qu
and ql and letting

∑
k∈C yk

a(t,s) denote individuals components of Yl yield the first two
equalities. The third equality follows from the definition of sa(t). Following this, the
second inequality holds because the total amount of flow on (static) arc a for OD
pair k during the entire planning horizon cannot exceed Hk. The sum of the latter
is H, a constant that can be factored out of the summation over A. This validates
the penultimate equality. Finally, the last equality follows from the fact that

∑
a∈A 1

simply denotes the number of elements in the set A. Choosing δ = ε
H|A| guarantees

that qT
u Yl −qT

l Yl ≤ ε. When combined with the results in Lemma 2, the latter implies
that qT

u Yu − �(Y∗)TY∗ ≤ ε and �(Y∗)TY∗ − qT
l Yl ≤ ε. ��

The approximate solution Yu can be improved by solving an additional nonlinear
program. In particular, consider the approximation refinement problem min{�(Y)TY:
(Y, Zu) ∈ S(δ)}, i.e., this is the original problem with Z = Zu. Doing so makes it pos-
sible to remove TE arcs corresponding to zu

a(t,s) = 0 from the TE network and discard
decision variables xa(t) and constraints (5) and (7) from the problem. In DTDTA, we
use xa(t), the number of cars on arc a at time t, to compute the travel time on arc a and,
subsequently, to select which TE arc to use or which za(t,s) to set to one. Thus, when Z
is given, xa(t) becomes unnecessary. Additionally, let s(t) be such that zu

a(t,s(t)) = 1 for
each t ∈ �. Then, constraint (9), originally (6), reduces to requiring

∑
(τ ,s)∈�a(t)

Ya(τ ,s)

to be in the interval (s(t) − δ, s(t)]. In other words, the original problem with Z = Zu

is a nonlinear multi-commodity flow problem with the latter as side constraints.
Let Ŷu be an optimal solution to min{�(Y)TY: (Y, Zu) ∈ S(δ)}. Then, the following

corollary shows that Ŷu better approximates Y∗.

Corollary 1 �(Y∗)TY∗ ≤ �(Ŷu)TŶu ≤ �(Yu)TYu ≤ qT
u Yu

Proof In the above sequence of inequalities, the first one follows because Y∗ is opti-
mal to the original problem and Ŷu is only feasible. The second holds because Yu is
feasible to min{�(Y)TY : (Y, Zu) ∈ S(δ)}. Finally, the last is due to Lemma 2. ��
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5 Computational results

We conducted numerical experiments using small test networks to empirically verify
our understanding of DTDTA as well as to evaluate the efficiency and effectiveness
of the approximation schemes discussed in previous sections.

In all problems, the planning horizon is [0, 10) and the travel cost functions are
either linear, i.e., φ(w) = 1.5+2.5( w

100 ), or quadratic, i.e. φ(w) = 1.5+2.5( w
100 )2, where

w is the number of cars on the arc. We consider the three different demand patterns
displayed in Table 1.

In all three patterns, travel demands at discrete points increases gradually until
time 4, levels off briefly, and then decreases gradually after time 5. The individual
demands in the three patterns are different and represent three traffic intensities:
low, medium, and high. We used GAMS [19] to implement and solve all problems
using NEOS Server of Optimization [31]. In particular, we used SBB [39] to solve
our nonlinear integer programming problem, i.e., DTDTA, XPress-XP [44] to solve
our linear integer programs, i.e., the lower and upper-bound problems, and CONOPT
[14] to solve our linearly constrained optimization problems, i.e., the approximation
refinement problems. All CPU times reported herein are from the NEOS server.

To empirically verify that DTDTA problem is not convex, we first consider the
two-arc network in Fig. 7 that has one OD pair. We let δ = 1. Thus, the discrete-time
planning horizon is � = {0, 1, . . . , 9}. We use the above quadratic travel time function
for both arcs and the function yields travel times in the interval [1.5, 4.0]. Because
δ = 1, the set of discrete travel times is � = {2, 3, 4}. Using the low traffic intensity
demand pattern in Table 1, we solved DTDTA using SBB and terminated it when the
relative optimality gap is less than 0.005 (or 0.5%). There are two optimal solutions
(see Table 2) to the two-arc problem with an optimal total delay of 450.

Consider the first solution, labeled ‘Solution 1’, in the Table 2. At time 0, there
are 20 cars to travel from nodes 1 to 2. At this time, there are also 20 cars already
on arc a1. These cars enter the arc at time 9 and have not reached their destination
at time 0. Because DTDTA assumes that the time to traverse arc a1 depends on the
number of cars on the arc at the entrance time, the travel time for arc a1 at time 0 is

Table 1 Demand patterns

Traffic intensity Time Total

0 1 2 3 4 5 6 7 8 9

Low 20 25 30 35 40 40 35 30 25 20 300
Medium 30 35 40 45 50 50 45 40 35 30 400
High 40 45 50 55 60 60 55 50 45 40 500

Fig. 7 Two-arc network

1 2

a1

a2
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1.5 + 2.5( 20
100 )2 = 1.6. On the other hand, there is no car on a2 at time 0. Cars that

enter the arc at time 8 already left the arc by time 0. Thus, the travel time for a2 at
time 0 is 1.5, the free-flow travel time. To minimize the travel time, all 20 cars entering
the network at time 0 must travel on a2. In fact, every car in Solution 1 travels at the
free-flow travel time of 1.5. Thus, there cannot be any solution with less total delay
and Solution 1 must be optimal. Because of the symmetry in the data, switching the
flows between the two arcs in the network yields Solution 2, another optimal solution.
Furthermore, it is easy to verify that every convex combination of these two solutions
is feasible to DTDTA and yields, on the other hand, a larger total delay, thereby
confirming empirically that the objective function is not convex.

Additionally, the ‘extreme’ travel behavior displayed in Table 2 may not be intui-
tive. This is due to the assumption that the system operator is extremely sensitive to
the difference in travel times and is willing to switch routes in order to save a minute
amount of travel time.

When the network is large, it would be too time-consuming to solve DTDTA opti-
mally or otherwise. In our experiments, we consider four approximate solutions to
DTDTA: (Yl, Zl), (YU , ZU), (Ŷl, Zl), and (ŶU , ZU), where the last two are refine-
ments of the first two. To evaluate the quality and the computation times of these
solutions, we consider the four-node network in Fig. 8 with two OD pairs, (1, 4) and
(2, 4). In our experiments, both OD pairs have the same demand pattern and all arcs
have the same travel cost function, linear or quadratic, as specified above.

First, we solved the lower and upper-bound problems with using two levels of
discretization, δ = 1 and δ = 0.5. As before, when δ = 1, the discrete-time plan-
ning horizon is � = {0, 1, . . . , 9}. On the other hand, when δ = 0.5, � becomes
{0, 0.5, 1, 1.5, . . . , 9, 9.5}. For the comparison below (see Tables 3 and 4), we assume
that, when δ = 0.5, there is no demand at fractional times (e.g., at 0.5, 1.5, 2.5, etc.)
and the demands at integral times (i.e., 1, 2, 3, etc.) are as shown in Table 1.

For both types of travel cost functions, the size of the optimality gap (i.e., qT
u Yu −

qT
l Yl) decreases by approximately 50% as δ decreases from 1 to 0.5. However, the

results in Tables 3 and 4 suggest that the reduction in the gap is due mainly to the
improvement in the solution, Yl, of the lower-bound problem. The approximate travel
delays as estimated by Yu change relatively little for the two values of δ.

Table 2 Optimal solutions to the two-arc problem

Time Solution 1 Solution 2

Inflow Travel time Inflow Travel time

a1 a2 a1 a2 a1 a2 a1 a2

0 0 20 1.600 1.500 20 0 1.500 1.600
1 25 0 1.500 1.600 0 25 1.600 1.500
2 0 30 1.656 1.500 30 0 1.500 1.656
3 35 0 1.500 1.725 0 35 1.725 1.500
4 0 40 1.806 1.500 40 0 1.500 1.806
5 40 0 1.500 1.900 0 40 1.900 1.500
6 0 35 1.900 1.500 35 0 1.500 1.900
7 30 0 1.500 1.806 0 30 1.806 1.500
8 0 25 1.725 1.500 25 0 1.500 1.725
9 20 0 1.500 1.656 0 20 1.656 1.500
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Fig. 8 Four-node network
1

3

2

4

Table 3 Solutions from the lower and upper-bound problems using the linear travel cost function

Traffic intensity δ = 1 δ = 0.5

qT
l Yl qT

u Yu Gap qT
l Yl qT

u Yu Gap

low 820.0 1580.0 760.0 1187.5 1560.0 372.5
medium 1200.0 2230.0 1030.0 1705.0 2230.0 525.0
high 1500.0 2875.0 1375.0 2187.5 2870.0 682.5

Table 4 Solutions from the lower and upper-bound problems using the quadratic travel cost function

Traffic intensity δ = 1 δ = 0.5

qT
l Yl qT

u Yu Gap qT
l Yl qT

u Yu Gap

Low 600.0 1200.0 600.0 900.0 1200.0 300.0
Medium 822.2 1644.5 822.2 1233.3 1644.5 411.1
High 1124.5 2248.9 1124.5 1686.7 2248.9 562.2

Tables 5 and 6 compare the solutions from DTDTA, (Y∗, Z∗), against two approx-
imations, (Ŷu, Zu) and (Ŷl, Zl). As in the two-node problem, we solve DTDTA using
SBB to obtain a (integer) solution (Y∗, Z∗) with less than 0.5% relative optimality
gap. To obtain (Ŷu, Zu), we first solve the upper-bound problem using XPress-MP
to obtain (Yu, Zu), a (integer) solution with less than 0.5% optimality gap, and, then,
solve the approximation refinement problem (with Z = Zu) using CONOPT to obtain
(Ŷu, Zu). The solution (Ŷl, Zl) are obtained in the same manner. In the two tables,
the CPU times for the two approximations are times for solving both bounding and
refinement problems.

For both linear and quadratic travel time functions, the two approximation schemes
provide solutions with relatively small errors using much less CPU time required to
solve DTDTA (see the ratios of the CPU times in Tables 5 and 6). For quadratic travel
time functions, the approximate solutions are identical to DTDTA solutions, except
for the high traffic intensity case when the approximate solutions are slightly better
(by 0.06%).
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Table 5 Quality of refined upper and lower-bound solutions: linear travel cost function

Traffic (Y∗, Z∗) (Ŷu, Zu) (Ŷl, Zl) Rel. CPU
intensity Err

Delay CPU∗ (s) Delay CPUu (s) Delay CPUl (s) (%) Ratio

CPU∗
CPUu

CPU∗
CPUl

Low 1337.50 27.42 1385.00 2.57 1392.50 2.38 3.55 10.7 11.5
Medium 1800.00 15.92 1866.30 2.66 1815.30 2.90 0.85 6.0 5.5
High 2290.00 95.02 2327.50 4.07 2315.00 1.25 1.09 23.3 76.0

Table 6 Quality of refined upper and lower-bound solutions: quadratic travel cost function.

Traffic (Y∗, Z∗) (Ŷu, Zu) (Ŷl, Zl) Rel. CPU
intensity Err

Delay CPU∗ (s) Delay CPUu(s) Delay CPUl(s) (%) Ratio

CPU∗
CPUu

CPU∗
CPUl

Low 1054.50 0.88 1054.50 0.09 1054.50 0.08 0.00 9.8 11.0
Medium 1543.80 6.62 1543.80 0.14 1543.80 0.34 0.00 47.3 19.5
High 2129.80 501.17 2128.60 0.10 2128.60 0.13 −0.06 5011.7 3855.2

6 Conclusion

This paper formulates a DTDTA in which the planning horizon is treated in a circular
fashion and events occur periodically. Doing so allows positive flows on the network
both at the beginning and at the end of the planning horizon. The structure underlying
the formulation is the time-expansion of the (static) network representation of streets
and highways. The resulting problem is a nonlinear program with binary variables,
a difficult class of problems to solve. Alternatively, two linear integer programs are
constructed to obtain approximate solutions and bounds on the total travel delay.
It is shown that solutions from the latter can be made arbitrarily close to solutions
of DTDTA. Furthermore, numerical results from small test problems suggest that
solving linear integer program is more efficient.
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